Classical transformations

Graphs


In [1]:
# We disable autosave for technical reasons.
# Replace 0 by 120 in next line to restore default.
%autosave 0
Autosave disabled
In [2]:
import awalipy # If import fails, check that 
               # Python version used as Jupyter
               # kernel matches the one
               # Awalipy was compiled with.
[Warning] The python module awalipy relies on compilation executed "on-the-fly" depending on the context (type of weights, of labels, etc.). As a result, the very first call to a given function in a given context may take up to 10 seconds. 

Strongly connected components

Let us consider an arbitrary random.
(It is probable that make_random_DFA produces a strongly connected automaton, hence the sligthly convoluted code below. )

In [3]:
A = awalipy.make_random_DFA(2,"ab")
B = awalipy.make_random_DFA(3,"ab")
C = awalipy.make_random_DFA(4,"ab")
D = A.sum(B).sum(C)
s = D.states()
D.set_final(s[1])
D.set_final(s[4])
D.set_transition(s[0],s[2],"a")
D.set_transition(s[5],s[2],"a")
D.display()
%3 I2 2 s0 I2->2 I4 4 s2 I4->4 I7 7 s5 I7->7 F3 F5 F6 F8 F9 F10 2->2 a 3 s1 2->3 b 2->4 a 3->F3 3->3 a, b 4->4 a 5 s3 4->5 b 5->F5 6 s4 5->6 a, b 6->F6 6->4 a 6->5 b 7->4 a 7->7 a 8 s6 7->8 b 8->F8 9 s7 8->9 a, b 9->F9 9->7 a 10 s8 9->10 b 10->F10 10->8 b 10->9 a

The method sccs gives the list of the strongly connected components that is, a list of list of int.

In [4]:
D.sccs()
Out[4]:
[[4, 3, 2], [1], [0], [8, 7, 6, 5]]

The method scc_of(stt_id) gives the list of the states that may reach and may be reached from stt_id.

In [5]:
D.scc_of(4)
Out[5]:
[2, 3, 4]

The method condensation() gives (as an Automaton), the Directed Acyclic graph of the sccs of the considered automaton.

In [6]:
D.condensation().display(history=True)
%3 I2 2 {s2, s3, s4} I2->2 I4 4 {s0} I4->4 I5 5 {s0, s1, s2, s3} I5->5 F2 F3 F5 2->F2 2->2 a, b 3 {s1} 3->F3 3->3 a, b 4->2 a 4->3 b 4->4 a 5->F5 5->2 a 5->5 a, b

Accessible, co-accessible, trim

In [7]:
E = D.copy()
E.display()
%3 I2 2 s0 I2->2 I4 4 s2 I4->4 I7 7 s5 I7->7 F3 F5 F6 F8 F9 F10 2->2 a 3 s1 2->3 b 2->4 a 3->F3 3->3 a, b 4->4 a 5 s3 4->5 b 5->F5 6 s4 5->6 a, b 6->F6 6->4 a 6->5 b 7->4 a 7->7 a 8 s6 7->8 b 8->F8 9 s7 8->9 a, b 9->F9 9->7 a 10 s8 9->10 b 10->F10 10->8 b 10->9 a
In [8]:
s = E.states()
for i in [5,6,7,8] :
    E.unset_initial(s[i])
for i in [2,3,4] :
    E.unset_final(s[i])
E.display()
%3 I2 2 s0 I2->2 I4 4 s2 I4->4 F3 F8 F9 F10 2->2 a 3 s1 2->3 b 2->4 a 3->F3 3->3 a, b 4->4 a 5 s3 4->5 b 6 s4 5->6 a, b 6->4 a 6->5 b 7 s5 7->4 a 7->7 a 8 s6 7->8 b 8->F8 9 s7 8->9 a, b 9->F9 9->7 a 10 s8 9->10 b 10->F10 10->8 b 10->9 a

Accessible

A state is accessible if it may be reached from an initial state.

In [9]:
E.accessible_states()
Out[9]:
[0, 1, 2, 3, 4]

The method accessible returns the restriction of tha tuatomaton to its accessible states (and accessible_here does the same thing in place).

In [10]:
E.accessible().display()
%3 I2 2 s0 I2->2 I4 4 s2 I4->4 F3 2->2 a 3 s1 2->3 b 2->4 a 3->F3 3->3 a, b 4->4 a 5 s3 4->5 b 6 s4 5->6 a, b 6->4 a 6->5 b

Co-accessible

In [11]:
E.display()
%3 I2 2 s0 I2->2 I4 4 s2 I4->4 F3 F8 F9 F10 2->2 a 3 s1 2->3 b 2->4 a 3->F3 3->3 a, b 4->4 a 5 s3 4->5 b 6 s4 5->6 a, b 6->4 a 6->5 b 7 s5 7->4 a 7->7 a 8 s6 7->8 b 8->F8 9 s7 8->9 a, b 9->F9 9->7 a 10 s8 9->10 b 10->F10 10->8 b 10->9 a

A state is co-accessible if there is a path from it to a final state.

In [12]:
E.coaccessible_states()
Out[12]:
[0, 1, 5, 6, 7, 8]

The method coaccessible returns the restriction of tha automaton to its co-accessible states (and coaccessible_here does the same thing in place).

In [13]:
E.coaccessible().display()
%3 I2 2 s0 I2->2 F3 F5 F6 F7 2->2 a 3 s1 2->3 b 3->F3 3->3 a, b 4 s2 4->4 a 5 s3 4->5 b 5->F5 6 s4 5->6 a, b 6->F6 6->4 a 7 s5 6->7 b 7->F7 7->5 b 7->6 a

Useful states, trim part

In [14]:
E.display()
%3 I2 2 s0 I2->2 I4 4 s2 I4->4 F3 F8 F9 F10 2->2 a 3 s1 2->3 b 2->4 a 3->F3 3->3 a, b 4->4 a 5 s3 4->5 b 6 s4 5->6 a, b 6->4 a 6->5 b 7 s5 7->4 a 7->7 a 8 s6 7->8 b 8->F8 9 s7 8->9 a, b 9->F9 9->7 a 10 s8 9->10 b 10->F10 10->8 b 10->9 a

A state is useful if there it is both accessible and co-accessible.

In [15]:
E.useful_states()
Out[15]:
[0, 1]

The method trim returns the restriction of tha automaton to its co-accessible states (and trim_here does the same thing in place).

In [16]:
E.trim().display()
%3 I2 2 s0 I2->2 F3 2->2 a 3 s1 2->3 b 3->F3 3->3 a, b
In [ ]:
 
In [ ]:
 
In [ ]: